Когда допустимые значения лежат не в евклидовом пространстве, а просто в каком-то множестве с заданным на нем расстоянием между точками. Если на этом множестве не определено сложение точек, мы принципиально не можем определить среднее стандартным образом.
Например, пусть есть какая-то случайная величина со значениями на сфере. Скажем, координаты падения метеоритов на какую-то планету. Хочется найти, куда "в среднем" они падают.
Если просто взять среднее значение по обычной формуле, у нас почти всегда получится точка, лежащая под поверхностью планеты. Выходит, что "в среднем" метеориты падают внутрь планеты - что выглядит довольно странно. А вот если мы для всякой точки А на поверхности посчитаем среднеквадратичное отклонение M|X-A|^2, а потом найдем точку (или, иногда, точки), для которой(ых) оно минимально, то эта точка по определению будет лежать на поверхности. (И если вдруг каким-то чудом планета плоская, эта точка будет совпадать с обычным матожиданием)
no subject
Например, пусть есть какая-то случайная величина со значениями на сфере. Скажем, координаты падения метеоритов на какую-то планету. Хочется найти, куда "в среднем" они падают.
Если просто взять среднее значение по обычной формуле, у нас почти всегда получится точка, лежащая под поверхностью планеты. Выходит, что "в среднем" метеориты падают внутрь планеты - что выглядит довольно странно. А вот если мы для всякой точки А на поверхности посчитаем среднеквадратичное отклонение M|X-A|^2, а потом найдем точку (или, иногда, точки), для которой(ых) оно минимально, то эта точка по определению будет лежать на поверхности. (И если вдруг каким-то чудом планета плоская, эта точка будет совпадать с обычным матожиданием)